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Abstract

The efficient synthesis of sugar-derived triazoles via a one-pot substitution–cyclization–oxidation
procedure is presented. Starting from D-arabinose and L-fucose, triazole structures as potential enzyme
inhibitors were obtained in six to eight steps. © 2000 Elsevier Science Ltd. All rights reserved.
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Various iminosugars have been shown to be very potent inhibitors of glycosidases1 and
glycosyltransferases.2 Due to their ability to resemble the transition states3 of the sugars involved
in these processes, a variety of monocyclic4 and bicyclic5 iminosugars have been synthesized or
isolated from natural sources over the years.

We have been involved in the synthesis of numerous compounds designed to inhibit glycosyl
transfer enzymes, especially a-fucosidase and the family of fucosyltransferases.5a Herein, we
would like to report a short and efficient synthesis of novel bicyclic triazoles starting from
naturally occurring carbohydrates. The main structural features of triazoles include: an sp2-
configured anomeric carbon, the presence of lone-pair donating nitrogens, and flattened
conformation of the six-membered ring, that might closely resemble the proposed transition
state conformation of the natural substrates in the enzyme catalyzed reaction. Even though
triazoles have been shown to be generally poor inhibitors of numerous b-glycosidases, possibly
due to a lack of a lone-pair donating heteroatom next to the anomeric center in the triazole
system,6 we considered them as useful targets for synthesis and as interesting structures for
evaluation as enzyme inhibitors.

Starting from D-arabinose 1 and L-fucose 2 the sugars were transformed into their tri-O-2,3,4-
benzyl-derivatives 3 and 4 by known procedures (Scheme 1).7,8 The a,b-unsaturated esters 5 and
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6 were formed in high yields from 3 and 4 as a 2:1 mixture of trans :cis isomers after
Horner–Wittig–Emmons reaction.9 Subsequently, 5 and 6 were converted to the tosylate 7 and
the mesylate 8, respectively.

Scheme 1. Reagent and conditions : (a) methyl-(triphenylphosphoranylidene)-acetate, toluene, 80°C, 16 h, 94%; (b)
methyl-(triphenylphosphoranylidene)-acetate, toluene, 80°C, 16 h, 81%; (c) TsCl, DMAP, pyridine, 40°C, 24 h, 89%;
(d) MsCl, DMAP, pyridine, rt, 24 h, 91%

Even though the formation of triazolines by intramolecular addition to a,b-unsaturated esters
has been studied,10 lengthy routes accompanied the introduction of the azido group. In hopes to
introduce the azide and directly convert this intermediate to the triazoline in a one-pot
procedure, by first displacement with azide and then subsequent cyclization with the unsaturated
ester, both the tosylate 7 and the mesylate 8 were treated with sodium azide followed by
1,8-diazabicyclo-[5.4.1]-undec-7-ene (DBU)11 in DMF (Scheme 2).12 Surprisingly, triazoles 11
and 12 were obtained in 30% overall yield.13 It is likely that the triazoline intermediates 9 and
10 in this three-step–one-pot reaction were easily aromatized by air oxidation.

Scheme 2. (a) i: NaN3, DMF, 80°C, 1 h, ii: DBU, 80°C, 1 h, 30%; (b) i: NaN3, DMF, 80°C, 1 h, ii: DBU, 80°C,
1 h, 30%

In order to investigate the one-pot cyclization sequence of an azide with an unsaturated
aldehyde, tosylate 7 was converted to the allylic alcohol 13 in two steps (Scheme 3). The allylic
alcohol 13 was then oxidized with tetrapropylammonium perruthenate (TPAP)14 to give the
aldehyde intermediate 14 which was transformed to triazole 15 after further oxidation with
TPAP with NMO (1.5 equiv.) as co-oxidant.
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Scheme 3. (a) 1 M DIBAL in THF, toluene, 0°C, 35 min, 85%; (b) NaN3, DMF, 70°C, 73% (+11% of starting
material); (c) TPAP, NMO, molecular sieves, CH2Cl2, rt, 5 h, 26%

The triazoles were deprotected to give the corresponding compounds 16 and 17; reduction of
the methyl ester, followed by deprotection gave the corresponding compound 18 (Scheme 4).15

Future plans include the use of these triazoles as building blocks for the development of enzyme
inhibitors and further development of the three-step process described herein.

Scheme 4. (a) Pd/C, H2, MeOH/AcOH 1/1, rt, 48 h, 95%; (b) Pd/C, H2, MeOH/AcOH 1/1, rt, 40 h, 77%; (c) LiAlH4,
THF, 0°C, 10 min, 88%; (d) Pd/C, H2, MeOH/AcOH 1/1, rt, 48 h, 95%
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